Oracle FLEXCUBE Investor Servicing®
Extensibility Reference Guide

Release 12.0

April 2012
Oracle Part Number E51528-01

ORACLE
FINANCIAL SERVICES

Contents

1

G =) 2= Vo OSSR 3
L1 AUGIEIICE .ottt et b e e b ettt b e ekt e bt b e e b e e e bt e bt e Rt e b b e b e e bt e bt e bt R e e bt e R e e bt e b bt re et e e 3
1.2 RelAtEd HOCUMENLSoiiiitiicieiie ettt ettt ettt bbbttt bbbt e b e st e e b st st r e st e 3
IS T 0100 1Y/=T01 1T o L OO OO OSSOSO P PP PRPO 4

| et woTe L ol s o) o NEU RSP S OSSR 4
2.1 HOW 0 USE ThiS GUITEeevieeeiee sttt sttt s b et sttt e et e st e besbeebeeneeneeneeneeneesneas 4

Extensibility APPIOachi........cccoiiiiiiiiiii s 4
N R T L0 (2SSO ORI 4
T I YT S TSP U TR P TP U TP PRPRURPPRPTVON 5
3.3 ReIEASE NIBIAICIIES ...ttt bbb bbbt b ettt sb e bt be st e e e b b nae s 5

EXTENSIDIE IS, ...vviiviiiieiiie ettt ettt e et e et e et e e te e ebe e be e beesbeeheesbeesbeesbeesbeenbeeaseebsesbeebeesbeebeeseennees 6
R AN o o] [Tor: Lo (I T= V=T I 1 ST 6

I R - Yoo = Vo 03 1| USSR 7

4.1.2 SYS JAVA SCIIPE FIIE ..ot bbbt b 7

4.1.3 Kernel JAVASCHIPE FIlEc.oiviiiiiiiicite bbbt b et 7

4.1.4 CIUSEEr JAVASCIIPE FIlE ...t 8

4.1.5 CUSLOM JAVASCIIPE FIlE ..ot et bbb 8
4.2 Database 1ayer — MaINTENANCEeiviiriiiitiie ettt sb ettt b bbbttt et eenes 8

4.2.1 FUNCLiON ID Main PACKAGE.couiiiiiriiiiiiitiieii sttt bbb bbbt sb et 8

4.2.2 HOOK PACKAGES .. eeieeieieitiicie ettt sttt ettt et et e e s e s s e s teesteeteenteeneesssesne e teenteeneennaennees 9

e T - =T I =T - Vo =PSSOSR 11

O S O 111 (=] g o= (ot - o[- USSP 12

S T O U 1 (o] (o To] ¢ Vo T PSS SPSSPR 12
4.3 Database layer — Bypassing base fuNCLIONAIILYcccovviiiiiieiicie e 12
4.4 Database |aYer — ONTINE ..ottt bbbt b e bbbt eb e bt ebe b enenrenea 12

Contract online extensibility ... 13
B.L IMESSAGE TIOW. ...ttt bbb bbbttt b et 13
5.2 HANAIEIS LIStviieiiiiiice e Error! Bookmark not defined.

FCIS-FD03-02-01-Extensibility Reference Guide 2

1 Preface

This document describes the approach to FLEXCUBE extensibility and acts as reference for
a various handlers provided for extensibility.

1.1 Audience

This document is intended for FLEXCUBE Application Developers/Users who are
authorized to perform the following tasks:

* Modity the layouts of existing FLEXCUBE Screens

* Modify the existing functionality by adding new fields/tabs/data blocks

» Extend the existing screen to have fields based on customer specific table/fields
* Add customer specific validations at extension hooks

* Add customer specific processing logics in batch processing

* Add customer specific notifications

* Add customer specific calculation elements

» Add customer specific reports

To Use this manual, you need conceptual and working knowledge of the below:

Proficiency Resources
FLEXCUBE IS Development overview | FCIS-FD01-01-01-Development
Overview Guide

RAD function ID development getting | FCIS-FD02-01-01-RAD Getting Started
started

1.2 Related documents

For more information on RAD development and extensibility, refer the below documents:

* FCIS-FD03-01-01-Extensibility Getting started

» FCIS-FD01-01-01-Development Overview Guide

* FCIS-FD02-02-01-RAD Function ID Development

* FCIS-FD02-03-01-RAD Web Service Development

* FCIS-FD02-04-01-RAD BIP Report Integration

» FCIS-FD02-05-01-RAD Notification Development

» FCIS-FD05-02-01-RAD-Reference

* FCIS-FD03-03-01-Extensibility By Example Volume 1
» FCIS-FD03-03-02-Extensibility By Example Volume 2
» FLEXCUBE_IS_Extensibility_Framework.doc

» FCIS-FD04-02-01-Generic Interface Configuration Guide
* FCIS-FD04-03-01-Upload Adapter Development Guide

FCIS-FD03-02-01-Extensibility Reference Guide 3

1.3 Conventions

The following text conventions are used in this document:
Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you enter.

2 Introduction

FLEXCUBE IS base product development is performed by Kernel team and the units that
are developed are called as Kernel software units. Other teams that requires the product
extensions are required to use the “extension units” applicable for respective teams.

Product extension required for the following teams:
¢ (Cluster release teams

o Customer release teams
o Partners/Customers

2.1 How to use this Guide

This document contains the below chapters describing the approach of extensibility in
different areas of the system.

e Chapter 3, “Extensibility Approach”
e Chapter 4, “Extensible Units”
e Chapter 5, “Contract Online Extensibility”

3 Extensibility Approach

This section describes the various extensibility features, layers that impact the extensibility
and release hierarchies involved.

3.1 Features

FLEXCUBE IS provides following additional handlers in the system:

¢ Contract Operation data base units

FCIS-FD03-02-01-Extensibility Reference Guide 4

These units are used to extend the FLEXCUBE module specific contract online
operations.

Interest & Charges SDE Definition

These SDE components used to define specific IC interest calculation rule.

¢ Consumer Lending SDE Definition

These SDE components used to define specific CL module interest calculation

Message Generation

This feature used to define customer specific advice tags and populate the tag
during runtime.

Maintenance of User Defined Fields at screen level

UDF feature is used to define the additional fields required for extensibility to
capture extra data

Generation of notifications for operations done in the system

Notifications are the specific event related messages to be propagated to
external systems.

3.2 Layers

FLEXCUBE IS provides handlers at the following layers to extensibility teams to extend
the business logic:

¢ Screen extensibility

Screen extensibility is provided to add data blocks, fields and other graphical
elements buttons, LOVs to the screens. Extensibility design also helps upgrade
of the extended logic in further release of FLEXCUBE IS.

e Screen - Java script extensibility:

Java script files extensibility provides ‘Pre” and ‘Post” handlers to add the code
at logical stages in front end processing.

¢ Back End Units:

Database extensibility provides ‘Pre” and ‘Post” handlers to add code at logical
stage in back end processing

3.3 Release hierarchies

To enable extensibility, Oracle FLEXCUBE identifies the release type both during design
and in runtime thereby restricting the development teams to add business logic in
designated units only. This is to ensure the development teams of different release types
use corresponding units to add business logic.

Below are the release types Oracle FLEXCUBE identifies and supports in extensible mode:
¢ Kernel: Oracle FLEXCUBE base product release

e Cluster: Customized base for a specific region or a specific functionality

FCIS-FD03-02-01-Extensibility Reference Guide 5

e Custom: Customized release for customers

Kernel is the main product release and Cluster releases are made using Kernel as the base
to develop Cluster specific functionality. This Cluster release can be further enhanced
based on the customer specific requirements to develop a Custom release.

In such case, hierarchy of Release types would be as below:
Kernel = Cluster = Custom

In some cases where the final set of requirements are not very different from Kernel
release or if there are not many common requirements across the customers of a particular
region, Kernel itself will be taken as base for Custom releases.

In such case, hierarchy of Release types would be as below:
Kernel =2 Custom

In all these cases, it is required for the Kernel release to provide place holders for adding
additional business logic both in Cluster and Custom releases.

Oracle FLEXCUBE will be enhanced to support extensibility in the below areas:
e Screen Design
e Front End Scripting
e Code Generator
e Back End PL/SQL Programming

The approach is to divide the programs (Java Script and PL/SQL Packages) into several
logical stages and to provide ‘Pre” and ‘Post” handlers to Customization teams.

4 Extensible units

There are basically the following four types of screens in Oracle FLEXCUBE IS:

* Maintenance: These screens are typically used to maintain static data used
across the system. These screens include product definition function as well.

e Online: These screens are typically used to capture contract related data. Any
operations related to contracts are performed in these screens.

» Batch: These screens are used to initiate Oracle FLEXCUBE Batch End or Day
batch operations.

e Reports: These screens are used to capture data required to generate a Bl
Publisher canned reports.

4.1 Application Server Layer

As a part of RAD function ID generation, following units are generated for application
layer:

FCIS-FD03-02-01-Extensibility Reference Guide 6

e RAD XML

e Language / Ul XML

e Java Script files
o SYS]Sfiles
o Kernel JS files
o Cluster JS files
o Custom JS files

4.1.1 Language xml

Language XML file, also called as UIXML is generated by RAD tool during function ID
(screen) development. This file is contains following elements:

e Screens

e Sections and Partitions

o Blocks

o Field sets

e Fields and their properties

During run time, XSL Transformation is applied to this XML file by linking it to an XSL
tile. This result in screen rendering at the browser.

4.1.2 SYS Java Script File

As a part of Function ID development, RAD tool generates the SYS Java script files. These
SYS JavaScript file mainly contains a list of pre declared variables:

e msgxml: - This variable is used by the system to build FCIS Request XML

e dataSrcLocationArray: - This variable is an array of DATA BLOCKS

e relationArray:-This array contains relation and relation type details of blocks.
e Databinding

e retflds and bndFlds:- These arrays contains LOV information

¢ CallFormArray, CallFormRelat, CallRelatType:- These arrays contains callform
details, call form relation and relation type

e actionsAmmendArray: - This array contains information for enabling fields
based on actions

4.1.3 Kernel JavaScript File

As a part of Function ID development, RAD tool generates the Kernel Java script files.
These Javascript file allows developer to add functional code and is specific to KERNEL
release. The functions in this file are generally triggered by screen events. A developer
working in kernel release would add functions based on two categories:

» Functions triggered by screen loading events
Eg: fnPreLoad_KERNEL(),fnPostLoad_KERNEL))

» Functions triggered by screen action events
Eg: fnPreNew_ KERNEL (),fnPostNew_ KERNEL ()

FCIS-FD03-02-01-Extensibility Reference Guide 7

4.1.4 Cluster JavaScript File

As a part of Function ID development, RAD tool generates the Cluster Java script files.
These Javascript file allows developer to add functional code and is specific to CLUSTER
release. The functions in this file are generally triggered by screen events. A developer
working in CLUSTER release would add functions based on two categories:

» Functions triggered by screen loading events
Eg: fnPreLoad_CLUSTER(),fnPostLoad_CLUSTER()

» Functions triggered by screen action events
Eg: fnPreNew_ CLUSTER (),fnPostNew_ CLUSTER ()

In case if any function in KERNEL javascript file has to be modified,this can be achieved
by overriding the function in CLUSTER javascript file.

4.1.5 Custom JavaScript File

4.2

As a part of Function ID development, RAD tool generates the Custom Java script files.
These java script file allows developer to add functional code and is specific to CUSTOM
release. The functions in this file are generally triggered by screen events. A developer
working in CUSTOM release would add functions based on two categories:

» Functions triggered by screen loading events
Eg: fnPreLoad_CUSTOM(),fnPostLoad_CUSTOM()

» Functions triggered by screen action events
Eg: fnPreNew_ CUSTOM (), fnPostNew_ CUSTOM ()

In case if any function either in KERNEL javascript file or CLUSTER javascript file has to
be modified,this can be achieved by overriding the respective function in CUSTOM
javascript file

Database layer - Maintenance

As a part of function ID development, RAD generates following database packages:
e Function ID MAIN Package
¢ Hook Packages
oKERNEL Package
oCLUSTER Package
oCUSTOM Package

4.2.1 Function ID Main Package

The Main Package contains the basic validations and backend logic for the Maintenance
function id. The Main package contains the mandatory checks required. It will also
contain function calls to the other packages generated by RAD.

The main package has the below stages:
» Converting Ts to PL/SQL Composite Type
e Checking for mandatory fields

FCIS-FD03-02-01-Extensibility Reference Guide 8

o Defaulting and validating the data

e Writing into Database

e Querying the Data from database

o Converting the Modified Composite Type again to TS

Each of these stages has a ‘Pre” and ‘Post’ hooks in the Kernel, Cluster and Custom
Packages. These Hooks are called from the Main Package itself. Main Package has the
system-generated code and should not be modified by the developer Kernel, Cluster and
Custom Packages are the packages where the respective team can add business logic in
appropriate functions using the Pre and Post hooks available.

4.2.2 Hook Packages

The Main Package has designated calls to these Hook Packages for executing any
functional checks and Business validations added by the user. The structure for all the
Hook Packages are the same, like:

e Fn_Post_Build_Type_Structure
e Fn_Pre_Check_Mandatory

e Fn_Post_Check_Mandatory

o Fn_Pre_Default_and_Validate
e Fn_Post Default and_Validate
e Fn_Pre _Upload_Db

e Fn_Post_Upload_Db

e Fn_Pre_Query

e Fn_Post_Query

These Functions are called from the Main package using the Pre and Post Hooks available
in the Main Package. The 3 Hook Packages namely Kernel, Cluster and Custom Packages
have similar structure and are for the respective teams to work on.

In the Table SMTB_PARAMETERS, the parameter RELEASE_TYPE indicates the
deployed release. The system uses this flag to determine the hooks to be called.
Depending on the deployed release type system skips calling these hooks.

For examples if the deployed release is Kernel, Cluster and Custom hooks need not be
called. Similarly in case the deployed release type is Cluster, system does not call custom

hook as it is not needed.

The Complete Flow for a sample function, say Fn_Check_Mandatory is as follows:

FCIS-FD03-02-01-Extensibility Reference Guide 9

o STPKS_STDCIF_MAIN. Fn_Check_Mandatory

o STPKS_STDCIF_CUSTOM.Fn_Pre_Check_Mandatory

o STPKS_STDCIF_CLUSTER.Fn_Pre_Check_Mandatory

o STPKS_STDCIF_KERNEL.Fn_Pre_Check_Mandatory

o STPKS_STDCIF_MAIN .Fn_Sys_Check_Mandatory

o STPKS_STDCIF_KERNEL.Fn_Post_Check_Mandatory

o STPKS_STDCIF_CLUSTER.Fn_ Post_Check_Mandatory

o STPKS_STDCIF_CUSTOM.Fn_ Post_Check_Mandatory

There are auto generated functions like FN_SKIP_<RELEAE_TYPE> which would
determine whether or not a particular hooks needs to be called.

Developer also has an option to bypass the base release hook if need be. For example if
the validations written in STPKS_STDCIF_Kernel. FN_PRE_CHECK_ _MANDATORY are
not required or not suitable for the Cluster release, system provides an option to bypass
the code written by Kernel team.

Similarly a Custom release can also bypass the code written by Kernel and Custom
Releases. This can be achieved by calling procedures PR_SET_SKIP_<RELEASE_TYPE>
and PR_SET_ACTIVATE_<RELEASETYPE>. These procedures will be made available in
the main package and the development teams of Customization teams can use these
procedures to skip and re-activate the hooks of parent release.

The Developer should avoid adding validations or Checks in the Pre Stage of any
function, like Fn_Pre_Check_Mandatory, etc and should aim to add all the validations in

the Fn_Post_Default and_Validate.

For Example let us see the flow for the Mandatory Stage for STDCIF:

FCIS-FD03-02-01-Extensibility Reference Guide 10

START

STPKS_STDCIF_KERMEL FN_PRE_CHEK _MANDATORY]

L STPKS_STOCIF_CLUSTER FN_POST_CHEK _MANDATORY J

Skip Syst

STPKS_STDCIF_MAINFN_SVS_CHEK _MBNDATORY]

[STPKS_STOCIF_CUSTOM.FN_POST_CHEK MANDATORY]

%

4.2.3 Kernel Package

The Kernel package is solely for the Kernel Team to modify. The Main package has
designated calls to the Kernel package for executing any functional checks or validations
included in the Kernel Package. All the user level validations and conditional operations
should be included in Fn_Post_Default_and_Validate. This function is called from the
Main Package after the execution of Fn_Default_and_Validate. User should avoid putting
validations or code in any other function.

FCIS-FD03-02-01-Extensibility Reference Guide 11

In case user needs to add a separate function, the existing RAD generated structure
should not be changed. Instead the user can create a new package e.g.
STPKS_STDCIF_UTILS package. The desired function can be included in this package
and the call can be made from the Kernel Package.

4.2.4 Cluster Package

The Cluster package is available to the Cluster Team to add any validations or Checks
specific to the Cluster Team over and above the Kernel Team. The Kernel Team or the
Custom Team should not modify the contents of this package.

4.2.5 Custom Package

4.3

4.4

The Custom package is available to the Custom Team only to add any validations or
Checks over and above those already present in the Kernel and Cluster Packages.

Database layer - Bypassing base functionality

In cases where the functionality of child release, either cluster or custom like to override
base functionality, there might be a need to skip the base functionality. RAD Generated
code provides handlers to this as well and the kernel functionality can be skipped from
Cluster and kernel/cluster can be skipped from custom releases.

For Example, let us say that the business logic in the function
STPKS_STDCIF_KERNEL.Fn_Pre_Default_and_Validate is contradicting the business
logic for Cluster, then the user has the option to skip the validation present in the Kernel.
For this the user needs to call PR_SET_SKIP_KERNEL. After it bypasses, the user again
needs to activate this flag by calling PR_SET_ACTIVATE_KERNEL. Else all the following
functions in KERNEL will be bypassed.

Once the Skip is set in cluster and again activated, it skips both the functions in kernel
namely, STPKS_STDCIF_KERNEL.Fn_Pre_Default_and_Validate and
STPKS_STDCIF_KERNEL.Fn_Post_Default_and_Validate. If the requirement is that only
the validations and logic in STPKS_STDCIF_KERNEL.Fn_Pre_Default_and_Validate be
skipped then the other function STPKS_STDCIF_KERNEL.Fn_Post_Default_and_Validate
needs to be called explicitly from the Cluster Package.

Similarly from Custom Package the validations in Kernel as well as Cluster can be
bypassed.

Database layer - Online

The Backend Units generated by RAD for Online Functions are:
e Main Package
o Kernel Package
e Cluster package

FCIS-FD03-02-01-Extensibility Reference Guide 12

o Custom Package
e Services package

The Basic structure and function of the Main, Kernel, Cluster and Custom Packages are
the same as in case of Maintenance Functions with the addition of a few extra functions
specific to Online Functions like FN_ENRICH, FN_PRODUCT_DEFAULT.

For Online functions, RAD generates an extra package called the Services Package. The
naming convention followed by the services package is <Module>pks_<Function
id>_SERVICES.

All the user specific business validations and checks need to be added in the services
package. Some of the Functions in the Services package are:

e Fn_Resolve Ref Numbers
e Fn_Check_Mandatory

e Fn_Default and_Validate
e Fn_Upload_Db

e Fn_Query

e Fn_ Process

e Fn_Product_Default

e Fn_Subsys_Pickup

e Fn_Enrich

e Fn_Unlock

Online extensibility is further explained in section 5.
5 Contract online extensibility
5.1 Message flow

Typically, the usage of contract online screens tends to be highest and these are the
screens where some additional defaulting or validations are requested. To address these
requirements, it is envisaged that additional handlers are provided in contract online
screens. These handlers need to be provided at individual operation level to increase the
flexibility.

To understand the additional handlers, it is important to first know the processing logic of
online operations in the back-end. Whenever, any operation is done in a contract online
screen, the system builds the data in an XML format and sends the request to the back-
end. The requests are then parsed in the database and the existing routines are invoked to
process the requests. On successful processing, a response message is built with enriched
data and sent to the front-end. The following schematic highlights the various stages in an
online request processing:

FCIS-FD03-02-01-Extensibility Reference Guide 13

FCJ Host Screens

FC BRN Screens

_________ —— 1 H II
GW MDB ECJ Servlet FC BRN Servlet
1T g i)
GW EJB FC EJB

Gateway MSG router ﬂ H

processing Service Router

= Log Message

= Generate Ref #
= SMS Authorization

Online / Maintenance

Service Handler

|

Operation Handler

STD XML Parser

TIX - Typeto TS

Source=FLEXCUBE?

Source=FLEXCUBE?

TIX - TSto Type STD XML Parser

| |

Module Op Upload

FCIS-FD03-02-01-Extensibility Reference Guide 14

The following is the detailed flow for processing any request related to a contract online
operation in the database:

e Oracle FLEXCUBE New Ul middleware (General E]JB) invokes the service router
(gwpks_service_router) for every request from a contract online screen.

e Each request contains the function id and the action. Based on these details, the
system derives the service name and the operation that is being processed. For
this, the system refers to GWTM_FCJ_FUNCTIONS. Any subsequent processing
of the message is performed based on the service name and the operation.

o There is a specific service handler for each module in Oracle FLEXCUBE. When a
request is received, the system identifies the service handler based on the service
name derived and invokes the required service handler package. The logic for
this available in gwpks_service_router

e Thereafter the control is handed off to an operations handler based on the
operation.

For example, when a request to amend an existing contract is received from Money
Market Contract Online screen, the function is passed as MMDCONON and the action
code is sent as AMEND. Based on these, the system derives the service name as
FCUBSMMService and the action code as ModifyMMContract

The service handler for processing Money Market contract online operations is
Gwpks_Mmservice.Pr_Service_Handler. The system invokes this package from
gwpks_service_router. The invocation of this function is done as follows

IF p Rec Msg Header.Service Name = 'FCUBSMMService'
THEN
Gwpks Mmservice.Pr Service Handler (p Is In Msg Clob

;P_In Msg Str
,p_In Msg Clob
;p_Rec Msg Header
;p_Is Out Msg Clob
;p_Out Msg Str
,p_Out Msg Clob
;P_Instr Rec
,p_Err Code
,p_Err Param);

END IF;

The control is then routed to the operation handler using the following logic

IF p rec msg header.operation code = ' ModifyMMContract'
THEN
dbg ('About to call the function
Gwpks ModifyMMContract.pr process msg');
gwpks modifymmcontract.pr process msg(p is in msg_clob,
p_in msg str,
p_in msg clob,
p_rec _msg_header,
p_is_out msg clob,
p_out msg str,
p_out msg clob,

FCIS-FD03-02-01-Extensibility Reference Guide 15

END IF;

p_instr rec,
p_flag,

p_err code,
p_err param);

The operation handlers then carryout the following tasks:

e Convert the message from XML to tilde separated

e Build PL/SQL type variables based on the tilde separated list of values

e Invoke the module specific processing function to process the request

« Validate the response received from the module processing function. In case the
response is an error, then build an error message by appending the errors to the
request message received.

e In case the processing is successful, then build a response message with an

enriched data

In order to enable extensibility, additional handlers have been provided before and after
every operation. These handlers are made available in a new package. These packages do
not contain any additional logic in the Kernel version. As part of customizations, these
handlers can be populated with the required logic.

For example, the following handlers are available for Money Market amendment

operation

FUNCTION fn pre modifymmcontract

(p_rec msg header IN

ns

gwpkss service router.ty biz process header
,P_instr rec IN OUT
gwpkss service router.ty processing instructio

,p_ty mmcont details IN OUT
ldtbs upload master3%ROWTYPE

,P_ty settlements IN OUT
ispks upload.ty tbl istbs upld

,p_ty rec misdetails IN OUT
mitbs upload class mapping%ROWTYPE
,p_ty schds details IN OUT
ldpks create contract.ty tb contract schedets
,p_ty linkages IN OUT
ldpks create contract.ty tb linkages
;p_tb hol ccy master IN OUT
ldpks create contract.ty hol ccy master
,p_tbl upl charges IN OUT
cfpks upload.ty tbl upl charges

,P_ty interests IN OUT
cfpks upload.ty tbl upl interest

,P_ty upl taxrule IN OUT
tapks upload.typ tax rule

,Pp_tbl udf det IN OUT
uvpks udf upload.ty upl cont udf

,Pp_ty brktxnbook IN OUT

brtbs upload maintxn%ROWTYPE

FCIS-FD03-02-01-Extensibility Reference Guide 16

,P_tb setbs upl repo blks IN OUT

ldpks create contract.tb setbs upl repo blk

;P _thb setb upl revrepo dets IN OUT

ldpks create contract.ty tb setb upl revrepo d
ets

,Pp_ty split tag details upld IN OUT

ldpks_split stlmts upload type.ty split tag de

tails upld
,p_tbl upl advice IN OUT
mspks upload advices.ty advice details
,p_tb relationship IN OUT
cspks_utils.ty tbl relation upld
;1 _contract ref no IN OUT
cstb_contract.contract ref no%TYPE
p_err code IN OUT VARCHAR2
,P_err param IN OUT VARCHAR2

) RETURN BOOLEAN AS
FUNCTION fn post modifymmcontract
(

) RETURN BOOLEAN AS

These handlers are available as part of the package GWPKS_EXT_MMSERVICE.
Currently, these functions do not contain any processing logic. If any default mechanism
is required or additional validations are to be performed, then they should be built in
these handlers as part of the customization.

Similar to this, each contract operation has been provided with pre and post handlers.
These handlers can be used to do some specific customizations. The following table gives
the list of extensible handlers available for various contract operations in Oracle
FLEXCUBE IS.

FCIS-FD03-02-01-Extensibility Reference Guide 17

ORACLE

FCIS-FD03-02-01-Extensibility Reference Guide
1A (IJ'il 2012

Oracle Corporation

World Headquarters

500 Oracle Parkwa
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200
www.oracle.com/ financial_services/

Copyright © 2012 - Oracle Financial Services Software Limited. All rights reserved.

No part of this work may be reproduced, stored in a retrieval system, adopted or transmitted in
any form or by any means, electronic, mechanical, photographic, graphic, optic recording or
otherwise, translated in any language or computer language, without the prior written
permission of Oracle Financial Services Software Limited.

Due care has been taken to make this document FCIS-FD03-02-01-Extensibility Reference Guide
and accompanying software package as accurate as possible. However, Oracle Financial
Services Software Limited makes no representation or warranties with respect to the contents
hereof and shall not be responsible for any loss or damage caused to the user by the direct or
indirect use of FCIS-FD03-02-01-Extensibility Reference Guide and the accompanying Software
System. Furthermore, Oracle Financial Services Software Limited reserves the right to alter,
modify or otherwise change in any manner the content hereof, without obligation of Oracle
Financial Services Software Limited to notify any person of such revision or changes.

All company and product names are trademarks of the respective companies with which they
are associated.

FCIS-FD03-02-01-Extensibility Reference Guide 18

	Contents
	1 Preface
	1.1 Audience
	1.2 Related documents
	1.3 Conventions

	2 Introduction
	2.1 How to use this Guide

	3 Extensibility Approach
	3.1 Features
	3.2 Layers
	3.3 Release hierarchies

	4 Extensible units
	4.1 Application Server Layer
	4.1.1 Language xml
	4.1.2 SYS Java Script File
	4.1.3 Kernel JavaScript File
	4.1.4 Cluster JavaScript File
	4.1.5 Custom JavaScript File

	4.2 Database layer – Maintenance
	4.2.1 Function ID Main Package
	4.2.2 Hook Packages
	4.2.3 Kernel Package
	4.2.4 Cluster Package
	4.2.5 Custom Package

	4.3 Database layer – Bypassing base functionality
	4.4 Database layer – Online

	5 Contract online extensibility
	5.1 Message flow

